A folding study of creatine kinase from Pelodiscus sinensis has not yet been reported. To gain more insight into structural and folding mechanisms of P. sinensis CK (PSCK), denaturants such as SDS, guanidine HCl, and urea were applied in this study. We purified PSCK from the muscle of P. sinensis and conducted inhibition kinetics with structural unfolding studies under various conditions. The results revealed that PSCK was completely inactivated at 1.8 mM SDS, 1.05 M guanidine HCl, and 7.5 M urea. The kinetics via time-interval measurements showed that the inactivation by SDS, guanidine HCl, and urea were all first-order reactions with kinetic processes shifting from monophase to biphase at increasing concentrations. With respect to tertiary structural changes, PSCK was unfolded in different ways; SDS increased the hydrophobicity but retained the most tertiary structural conformation, while guanidine HCl and urea induced conspicuous changes in tertiary structures and initiated kinetic unfolding mechanisms. Our study provides information regarding PSCK and enhances our knowledge of the reptile-derived enzyme folding. 相似文献
Copper (Cu2+) is an essential nutrient for plants but toxic at high concentrations. We subjected seedlings and young plants of eelgrass Zostera marina to different seawater Cu concentrations (3, 4, 5, 10, 30 and 50?µg?l?1) for over 30 days under controlled laboratory conditions. Natural seawater without added Cu (3?µg?l?1) was used as reference seawater. We measured plant response in terms of survivorship, morphology, growth, productivity and leaf pigment concentration. Survival analysis combined with morphological, dynamic and productive assessment suggested that the optimum seawater Cu concentration for the establishment of Z. marina seedlings and young plants is 4?μg?l?1. The photosynthetic response of young plants to copper enrichment, including an increase in chlorophyll content under low Cu concentration treatment but significant decrease when treated with high concentrations of Cu, is similar to those reported for other seagrass species. NOEC (no observed effect concentration), LOEC (lowest observed effect concentration) and LC50 (lethal concentration that caused an increase in mortality to 50% of that of the control) values of seedlings were significantly lower than those of young plants, implying a reduced Cu tolerance to high concentrations (>10?μg?l?1). This study provides data that could prove helpful in the development of successful eelgrass restoration and conservation. 相似文献
A series of (4-piperidinylphenyl)aminoethyl amides based on dipeptide anilines were synthesized and tested against cathepsin K, cathepsin L and cathepsin B. These new non-covalent inhibitors exhibited single-digit nM inhibition of the cysteine proteases. Compounds 3 and 7 demonstrated potency in both mouse and human osteoclast resorption assays. 相似文献
Multidrug resistance protein 1 (MRP1) is capable of actively transporting a wide range of conjugated and unconjugated organic anions. The protein can also transport additional conjugated and unconjugated compounds in a GSH- or S-methyl GSH-stimulated manner. How MRP1 binds and transports such structurally diverse substrates is not known. We have used [(3)H]leukotriene C(4) (LTC(4)), a high affinity glutathione-conjugated physiological substrate, to photolabel intact MRP1, as well as fragments of the protein expressed in insect cells. These studies revealed that: (i) LTC(4) labels sites in the NH(2)- and COOH-proximal halves of MRP1, (ii) labeling of the NH(2)-half of MRP1 is localized to a region encompassing membrane-spanning domain (MSD) 2 and nucleotide binding domain (NBD) 1, (iii) labeling of this region is dependent on the presence of all or part of the cytoplasmic loop (CL3) linking MSD1 and MSD2, but not on the presence of MSD1, (iv) labeling of the NH(2)-proximal site is preferentially inhibited by S-methyl GSH, (v) labeling of the COOH-proximal half of the protein occurs in a region encompassing transmembrane helices 14-17 and appears not to require NBD2 or the cytoplasmic COOH-terminal region of the protein, (vi) labeling of intact MRP1 by LTC(4) is strongly attenuated in the presence of ATP and vanadate, and this decrease in labeling is attributable to a marked reduction in LTC(4) binding to the NH(2)-proximal site, and (vii) the attenuation of LTC(4) binding to the NH(2)-proximal site is a consequence of ATP hydrolysis and trapping of Vi-ADP exclusively at NBD2. These data suggest that MRP1-mediated transport involves a conformational change, driven by ATP hydrolysis at NBD2, that alters the affinity with which LTC(4) binds to one of two sites composed, at least in part, of elements in the NH(2)-proximal half of the protein. 相似文献
Cancer-associated fibroblasts (CAFs) have been shown to play a strong role in colorectal cancer metastasis, yet the underlying mechanism remains to be fully elucidated. Using CRC clinical samples together with ex vivo CAFs-CRC co-culture models, we found that CAFs induce expression of Leucine Rich Alpha-2-Glycoprotein 1(LRG1) in CRC, where it shows markedly higher expression in metastatic CRC tissues compared to primary tumors. We further show that CAFs-induced LRG1 promotes CRC migration and invasion that is concomitant with EMT (epithelial-mesenchymal transition) induction. In addition, this signaling axis has also been confirmed in the liver metastatic mouse model which displayed CAFs-induced LRG1 substantially accelerates metastasis. Mechanistically, we demonstrate that CAFs-secreted IL-6 (interleukin-6) is responsible for LRG1 up-regulation in CRC, which occurs through a direct transactivation by STAT3 following JAK2 activation. In clinical CRC tumor samples, LRG1 expression was positively correlated with CAFs-specific marker, α-SMA, and a higher LRG1 expression predicted poor clinical outcomes especially distant metastasis free survival, supporting the role of LRG1 in CRC progression. Collectively, this study provided a novel insight into CAFs-mediated metastasis in CRC and indicated that therapeutic targeting of CAFs-mediated IL-6-STAT3-LRG1 axis might be a potential strategy to mitigate metastasis in CRC.Subject terms: Colon cancer, Cancer microenvironment相似文献
High-quality rice reference genomes have accelerated the comprehensive identification of genome-wide variations and research on functional genomics and breeding. Tian-you-hua-zhan has been a leading hybrid in China over the past decade. Here, de novo genome assembly strategy optimization for the rice indica lines Huazhan (HZ) and Tianfeng (TF), including sequencing platforms, assembly pipelines and sequence depth, was carried out. The PacBio and Nanopore platforms for long-read sequencing were utilized, with the Canu, wtdbg2, SMARTdenovo, Flye, Canu-wtdbg2, Canu-SMARTdenovo and Canu-Flye assemblers. The combination of PacBio and Canu was optimal, considering the contig N50 length, contig number, assembled genome size and polishing process. The assembled contigs were scaffolded with Hi-C data, resulting in two “golden quality” rice reference genomes, and evaluated using the scaffold N50, BUSCO, and LTR assembly index. Furthermore, 42,625 and 41,815 non-transposable element genes were annotated for HZ and TF, respectively. Based on our assembly of HZ and TF, as well as Zhenshan97, Minghui63, Shuhui498 and 9311, comprehensive variations were identified using Nipponbare as a reference. The de novo assembly strategy for rice we optimized and the “golden quality” rice genomes we produced for HZ and TF will benefit rice genomics and breeding research, especially with respect to uncovering the genomic basis of the elite traits of HZ and TF.